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This paper presents a global mode modeling of space structures and a control scheme from 

the practical point of view. Since the size of the satellite has become bigger and the accuracy of 

attitude control more strictly required, it is necessary to consider the structural flexibility of the 

spacecraft. Although it is well known that the finite element (FE) model can accurately model 

the flexibility of the satellite, there are associated problems : FE model has the system matrix 

with high order and does not provide any physical insights, and is available only after all 

structural features have been decided. Therefore, it is almost impossible to design attitude and 

orbit controller using FE model unless the structural features are in place. In order to deal with 

this problem, the control design scheme with the global mode (GM) model is suggested. This 

paper describes a flexible structure modeling and three-axis controller design process and 

demonstrates the adequate performance of the design with respect to the maneuverability by 

applying it to a large flexible spacecraft model. 
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I. I n t r o d u c t i o n  

In the past, satellites were small in size and 

required minimal electrical power since they per- 

formed simple missions in space. But the satellites 

and other space structures today have very com- 

plex missions and hence they may need more 

electric power. As a result, the solar panels of the 

today's common satellites are required to be large 

in order to generate sufficient electrical power. 

In the previons works, the satellite systems were 

generally considered to be rigid bodies (Iwens, 

1982; Howley, 1996; Bang and Lho, 2001), but 
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since their solar panels have flexibility, it is nec- 

essary to consider flexibility effects when model- 

ing the satellite's dynamic system and designing 

the attitude and orbit controller (Hughes, 1972, 

1987 ; Wie et al., 1984). 

It is known that the performance of the attitude 

and orbit control system (AOCS) is degraded by 

structural flexibility. Hughes (1972) and Ryan 

(1990) found that flexible appendage such as the 

solar array of a satellite has a very small damping 

ratio in the low frequency region and can be mo- 

deled by a sum of the number of flexible modes. 

Because the natural frequencies of the modes are 

widely distributed and some of them may be 

located near the attitude control bandwidth, they 

can be stimulated by control torque force (Balas, 

1982). 

Moreover, some of the expected disturbances 

can easily excite low frequency vibration on the 

bus system. Such vibration will degrade the per- 
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formance of the satellite system that needs to 

maintain specific shape or attitude with high 

accuracy. Junkins et a1.(1993) investigated the 

reason why the flexibility in vibration control 

should be considered in controller design. Wie 

and Liu (1993) investigated the solar array vi- 

bration on telescope pointing jitter using classical 

and H= control design. 

In general, the finite element method is used in 

modeling flexible space structures. It is well 

known that the FE model is accurate, but it has 

some defects as follows: (1) It has high order 

system matrix, (2) not easy to get the physical 

insights due to design changes, and (3) can be 

constructed only after all structural features have 

been decided. So it is impossible to pre-design an 

attitude controller using the FE model. Therefore 

it is desired to consider some other practical 

methods to model the flexibility of the satellite. 

This paper presents global mode analysis methods 

that includes flexibility of appendage of spac- 

ecraft. For design convenience, two or three flex- 

ible modes have strong effects on attitude/orbit 

and the control subsystem is generally chosen in 

modeling. The modeling process is presented first 

and the resultant flexible model is applied to 

pre-built  rigid body attitude controller. After 

analysis of the flexibility effect on control per- 

formance, the controller is reinforced with the 

first order filters and the improved performance 

of the controller design is shown by simulation 

results. Classical control has been addressed in 

previous studies for spacecraft control using the 

reaction wheel (Li et al., 1996). 

2. Model ing by Global 
Mode Analys is  

2.1 Equations of motion 
In this section, we will consider only one axis 

rotational motion of a spacecraft with the as- 

sumption of no cross coupling effects between the 

axes. It will be shown in section 5 that this 

assumption is not restrictive. 

The geometrical modeling of the satellite with a 

complex large solar panel using beam model is 

shown in Fig. l, We will use some variables, x 
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Discrete model consisting of a rigid body and 
flexible beam 

for span wise variable, u (x) for the beam deflec- 

tion, and a is outer radius of the hub along the 

undeformed appendage axis, Or is the hub angle, 

l is the length of the flexible structure (beam), 

and Tc is control torque produced by the reaction 

wheel on the rigid body. Here, we have neglected 

radial deformations and the nonlinear radial ve- 

locity correction required to rigorously enforce 

zero elongation of the deformed appendage. 

The flexible structure is assumed to be slender. 

To formulate the problem, we shall make use of 

the extended Hamilton's principle given by the 

variational statement (Meirovitch, 1990), 

h l l  

fO(T-V)dt+ f~W.cdt=O (1) 
6 6 

In Eq. (1), T is the kinetic energy, V is the 

potential energy, OWnc is the virtual work of the 

system, a( ) is the variational operator and t is 

time variable. The partial differential equations of 

motion for the elementary case of beam flexure 

using the Euler-Bernoulli beam theory neglecting 

axial-force effects, shear effects and rotary inertia 

is 

~u(x,  t)/Ot2+ (EI/pA)3%(x, t)/OX4:Or(X) 

~+l (2) h~r-2OA fx(Yu (x, t)/Ot 2) dx-- Tc 
a 

Where the flexural stiffness is El,  system moment 

of inertia is It, and the mass per unit area is 

pA, all of which are taken to be constants 

along the beam length in Eq. (2). In order to find 

the natural frequencies and corresponding mode 

shapes, consider the homogeneous version of the 
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first part of Eq. (2). 

o~u (x, t)/3t2+ ( E I / p A )  34u (x, t)/8x4=0 (3) 

One form of solution of Eq. (3) can be re- 

presented by 

u(x, t)=¢~(x) T(t)  (4) 

Eq. (4) can be interpreted as cantilever motion 

with a constant shape ¢'(x) in which the ampli- 

tude varies with time according to T ( t ) .  And 
¢ 

T( t )  can be written as 

T( t )  = A  s in (w , t )  + B  cos (on,t) (5) 

where 

coz~ = (ill) ~EI /  ml  2 

In Eq. (5), the constants A and B depend on the 

initial velocity and displacement conditions. The 

shape function, ,~'(x), has the general form given 

by 

¢~(8) =c~ cosh(fll~) + ca sinh(~l~) (6) 
+ca  cos (/~l~ e) +c4 sin(/~l~) 

The constants, Cn, n =  1, ..., 4 in Eq. (6) represent 

the shape and amplitude of the cantilever beam 

vibration. These constants are evaluated by consi- 

deration of  the boundary conditions of the can- 

tilever beam. 

2.2 Global mode analysis 
The global mode analysis is a method that is 

distinct from the other analysis methods such as 

cantilever modal analysis (Marcel, 1997). Global  

mode (GM) model analysis generates total flex- 

ible system directly. In order to get the global 

mode shape, we take the system from free vibra- 

tion when we allow the rotational motion of the 

center-body in absence of the control torque. We 

take the drive system equation in the presence of 

the control torque and body motion from the 

cantilever model. This method is more practical 

than the cantilever mode in controller design. Wie 
and Liu (1993) studied the flexibility of solar 

array, which has the most significant interaction 

with the spacecraft. They introduced the flexibi- 
lity of structures to spacecraft using a second 

order transfer function. 
The equation of motion of the spacecraft can 

be expressed in dimensionless variables, 7] and 

e, that are written as follows. 

~ / O t 2  + ( E I / m l  a) 84zl/O~4=OT(~+ a/ l) (7) 

I 

I r & -  Zml2 f ( # + a/ l) ( i~7/ at 2) d#= Tc (8) 
o 

where, 

x = l ~ + a ,  u=Tl ,  m = r h o * A l  

In this paper, we are concerned with the symmet- 

ric and anti-symmetric modes involving center- 

body rotation, which are the more significant 

modes because the anti-symmetric modes are im- 

portant in view of the attitude control. We can 

take normalized displacement function as 

an  

~7 = r,~x ~b n (e) cos (f2nt) (9) 

and rigid rotation angle as 

on 

0r=  52. b. cos (S2.t) (10) 
n = l  

Substituting Eqs. (7) and (8) into Eqs. (9) and 

(10), we obtain 

o ~ ,  ( ~ ) / a ~  4 -  ( 5 l ) ' , ~ ,  (~) l l )  
= (/~l)~(~+a/l)  b, 

I 

2ml2J( # + a/ I) q~. ( ~) d~=I~b. 12) 
0 

In Eq. (11), (13l) n is given by 

(13l) ~= mlaf2Z~ / E I  13) 

and qSn(~ e) contains an arbitrary constant. 

In order to obtain the mode shape and the 

frequency equation, apply the boundary condi- 

tions at both ends of the beam. We obtain the 

frequency equation as follows. 

2ml2{ 2(fll) 2[tan(fll) + t a n h ( f l l )  ] 

+2/~/[ tan( /3 / )  + tanh( /3 l )  ] (14) 
+ [tan (/~l) - t a n h  (•l) ] } 

= - J r  ( i l l)  a[ 1 + s e c  (i l l)  sech  (i l l)  ] 

Eg. (14) is a transcendental equation in /31 and 

must be solved numerically for eigenvalues /~ 

from which we can readily obtain frequencies 
(Meirovitch, 1967). J r  denotes the center body 

moment of inertia. 
In the presence of the control torque, the de- 

formation function can be represented as 
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~(#. t)=~= ¢,(#)q,(t) (15) 

By eliminating the rotation angle Or in Eqs. (7) 

and (8), we obtain 

I 

82~/at 2- (2m12/L) (~+a/l) f (#+a/ l) 82~/3tad~ 
+ (E1/m/a) yzl/O~4 ,~ (16) 

=(~+a/l) Tc/L 

From Eqs. (7), (8), and 15), we obtain 

I 

2 { E ¢ , -  (#+a/l) /(#+a/t) (2mF/j~) 
n = l  o (17) 

+ (EI/mP)] (~. +~2J q,) } 
= (#+a/l) Tc/L 

By applying Eq. (12), Eq. (17) becomes 

0 o  

32.{[¢,-b,(#+a/l) (~,+a'2~q,) ]} 
,=~ " (18) 
= (#+a/l) Tc/L 

Now, by multiplying Cj(#) and integrating over 

the range #----0 to # = l  to obtain the system 

dynamic equation after applying the boundary 

conditions and the orthogonality conditions, Eq. 

(18) can be written as 

(~, + z'2~z q,) =A, Tc/L (19) 

where An is given by 

b,  (20) A ,  I 

(2mlZ/I~) f ¢ ~ d # -  b z, 
0 

To facilitate the analysis of Eq. (19), we take 

its Laplace transformation in terms of Or(S) - - s  
is the Laplace transform v a r i a b l e - - a n d  obtain 

o,u) 

b,eck . . . . . .  

Flmdb!e ~ ~ [IP'~i 
block I .... ~ I T : 

I 
L J *:. L_. i 

Fig. 2 Simplified global mode model (GMM) block 
diagram 

_(To(s) ) 1+s29, k. 
O r ( S ) - - \ ~ s Z  /[  ,=,sZ+g.2~ } (21) 

where the modal gain k,, for the global mode is 

given by 

I 2 

kn = , (22) 
' d$]2 !¢~d#- 2mlZ / Ir[ ! (  # + a/ l) ¢, 

The block diagram of Eq. (21) is shown in 

Fig. 2. In this paper, we consider only the first 

(bending mode) and the second mode (anti-  

symmetric bending mode) for the controlles 

design porpose since they are more important 

than the torsional mode from the attitude control 

point of view. The present method can be easily 

extended by just adding additional modes. 

3. E v a l u a t i o n  o f  G M  and F E  M o d e l  

In this section, the GM model and the FE 

model are numerically evaluated, and bode plots 

of single axis control loop using the resultant 

models are presented. The overall control loop 

can be represented as in Fig. 3. The flexible 

structure model of Fig. 3 is substituted with the 

GM model and the FE model to compare the 

resulting frequency response though the GM 

model is not as accurate as the FE model, it gives 

good resemblance of the satellite's dynamics. So, 

the GM model can be regarded as a good model 

for designing the controller of a large flexible 

structure. 

Generally, the FE analysis is performed after 

most of design key parameters are fixed. Since the 

a dynamic characteristics of two models are 

O._..,(S)~' Pl h ~ ]  Non-linear 
~- {_ -J  ControllerJ -J Wheel .ode, I 

I ,~Xl'S Controller ' ~ " 

• ~ Flexible [ 
q t? ( s ) _ _  Sructure Modelj "~ 

Fig. 3 

r+)  

Simplified control loop block diagram with- 
out filter 
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simular, we can perform the design of controller 

and a numerical simulation on the GM model to 

suppress the vibration. 

3.1 Global mode model 

Table 1 shows variables and their values for 

Table 1 Coefficients of global mode model (GMM) 

Parameters Values Unit 

A 
l 

L 

S2~ 

0.435 
1.500 

307.50 
3.0787 
4.5867 

m 

m 

kg" m 2 

radian/seconds 
radian/seconds 

10  "1 

o 

"zr 

10 0 10 ~ 
Frequency (rad/sec) 

10  t 

Fig. 4(a) 

1 n ° ~ 0 
Frequency (ra~sec} 

Bode magnitude plot of the loop transfer 
function of rooll maneuver for the global 
mode model (GMM) 

m o . . . . .  ...:.....i..-i..~.-~.+.~-~ .......... ~.--..~.....~.,~..~..~.~ 

10 a 10  4 10  o 10  ~ 

Frequency (radtsec) 
O : : , : : : : l  . . . . . . . .  1 . . . . . . . .  

i i i !~i! i  i ! ! i i i i l l  i ' i i i i !  

~, : ! !  ! i [ ! ! ~  

-2z0 F ~ ~ - . 4 . - ; - i . - : . : i ~  
10 "2 

Fig. 4(b) 
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Bode magnitude plot of the loop transfer 
function of rooll maneuver for the finite 
element model (FEM) 

the GM model analysis. In this paper, only the 

first two flexible modes are modeled but it can be 

extended to include additional modes if more 

accurate model is desircd. 

The transfer function can be built by getting 

the gain of kt and kz from Eq. (22) by applying 

the values of Table 1. The calculated values of 

these gains are k1=0.4312 and k2=0.1003 for 

the roll axis, whereas the other gains for the pitch 

and yaw axes are negligible compared to the roll 

axis. A bode plot of the GM model with two 

flexible modes is shown in Figs. 4(a) and 4(b). 

Two surges appear clearly around the first and 

second flexible modes and their frequencies are 

0.49 Hz and 0.73 Hz. The more exact model can 

be obtained by considering the higher order 

modes, but it is thought that two flexible mode 

model can provide a suifable model tbr the con- 

troller design. 

3.2 Finite e lement  model 

The FE model is derived from MSC/NAS- 

TRAN finite element model after key design 

parameters hare been fixed. For the finite element 

analysis, the moment of inertia for the flexible 

structure is shown in Table 5. And, it takes a state 

space representation in order to fit into an atti- 

tude control loop. The dynamics of this block are 

represented as follows 

A 0 I B -  0 
= [ -  C0Zn [~Loheel,, (23) --2 ~'COn]' -- r xy z l  

C = L (rCyro 0] , D = [ 0 ]  

The A of Eq. (23) is 40×40 matrix and has the 

natural frequency Wn (see Table 2), and the 

modal damping ratio, ~'=0.002. The dimension 

of the input matrix B is 40×3 and that of the 

output matrix C is 3 ×40 and/represents  the unit 

matrix. The dimension of the matrix was deter- 

mined along with the MSC/NASTRAN results. 

The important results of MSC/NASTRAN analy- 

sis and vibration test data for controller design 

are shown in Table 2. The first 6 modes are rigid 

body motion (3 translations and 3 rotations). 

The others are the first bending mode and the 

second anti-symmetric bending mode, and the 

torsional mode. From the FE results, bode plot 
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T a b l e  2 Modal descriptions for flexible structure 

Mode number Frequency Description 

1-6 -- Rigid Body Motion 
7 0.49 Hz I st Bending Motion 
8 0.73 Hz 2 nd bending Motion 
9 0.94 Hz Torsion Motion 

is easily drawn as in Fig. 4(b). Two surges 

around the frequencies of 0.49 Hz and 0.73 Hz 

represent the first and second bending modes, 

respectively. 

Remarks 3 - 1  : The same phenomenon in which 

two surges are caused by two flexible modes can 

be observed in Fig. 4(a) and Fig. 4(b) at the 

same frequencies. Therefore, though both plots 

are not exactly identical, it is easily known that 

the frequency characteristics of the GM model 

provide enough resemblance to those of the FE 

model for designing the axis controller. 

Remarks 3-2 : Although the FE model can rep- 

resent flexible system accurately, it cannot be 

obtained until all the structural features are de- 

cided. So, it is desirable to use the GM model 

before the FE model is decided. Both modeling 

methods are not direct and do not require two- 

step methods. 

4. Spacecraft Attitude 
Control Logics 

angle and c1,2,3 are direction cosines of the Euler 

axis with respect to the inertial refenence frame. 

An important relationship to note is shown in 

Eq. (28). 

( [ 2 +  2 2 2 (/2 -I- (/3 -[- (/4 : 1 (28)  

By reducing the differential equations, the qua- 

ternion vector is denoted as q=Eq~ q2 qa]r and 

q4 is the generated angle necessary for the im- 

plementation of the controller. 

1 1 
q =  - - ~  w X q + ~  (/40) (29) 

1 
( / 4 = - - ~ -  0)7(/ (30) 

The control torque is defined as 

Tc = - Kp(/e-  K~0)-  K i / ( / ed t  (31) 

where Tc is the control torque and disturbance 

torque. Thd control torque input can be assumed 

to be known for subsequent steering logic design 

and wheel momentum. Classical PID controller 

gains,/~p, Ka and K~, were achieved for each axis 

considering the system stability, settling time, 

steady state error and bandwidth, etc. To avoid 

stimulating the natural frequency of the flexible 

body, the controller in reaction wheel has band- 

width l0 times larger than the flexural body 

frequency of 0.02 Hz 

5. Filter Design 

The controller will also utilizes quaternion 

feedback where the quarternions are associated 

with an eigenaxis rotation about an Euler axis 

with unit vector e = (e~, e2, e3). Quaternion teed- 

back control scheme has been proposed for the 

three-axis large maneuvers, where global stability 

is guaranteed (Wie et al., 1989). The quaternions 

are 

ql = el sin (~/2) (24) 

q2 = e2 sin (~/2) (25) 

qa = ea sin (~b/2) (26) 

q4 = cos (~b/2) (27) 

where ~ is the angle about the Euler axis rotation 

It is shown that without the isolation and 

attenuation of the flexible modes, the attitude of 

the spacecraft can be destabilized by the interac- 

tion with a large flexible mode. A low pass filter 

is shown to be an effective way to provide the 

necessary attenuation and isolate the control from 

the flexible mode 

The top-level requirements imposed on the 

controller design are shown as follows 

(I) Bandwidth of the axis controller is 0.02 Hz 

and 0.2 Hz for motor controller. 

(2) Overshoot should be less than 20% and 

shorter than 200 seconds in settling time. 

(3) Gain margin of over 10dB and phase mar- 

gin of over 30 degrees. 
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Table 3 gives the performance results when the 

GM model  is used as the flexible satellite model  

in the control  loop shown in Fig. 5. It is impor-  

tant to note that for the roll axis, the gain margin 

is too small to satisfy the design requirements.  

In general, the dynamics of  flexible structures in 

the low frequency region makes a resonance at 

bending frequencies with l imiting control  band- 

width. To el iminate this effect, two kinds of  filter 

(1 st and 2 ed order low pass filter) are considered 

and it is shown that the first order filter giver by 

Eqs. (32) and (33) is sufficient 

G i n ( s ) -  a (3)) 
s + a  

Go~,t (s) --  ~ (33) s+~' 

a = 5  is chosen in accordance with the inner 

loop's  bandwidth,  and /3=7  in accordance with 

the outer loop's  bandwidth.  The frequency of  the 

first asymmetric array flapping and its effects are 

examined. To examine the effects of  the low pass 

filter, stability performance is obtained using the 

control  loop shown in Fig. 5 (see Table  3). The 

gain margin of  the roll axis control ler  is increased 

from 3.547dB to 16.12dB through filtering. It is 

generally known that by adding the low pass 

filter, the top- level  requirements of  the attitude 

control ler  are satisfied. In the case of  pitch or yaw 

axis control ler  that does not meet the require- 

ments, a new filter design will be needed for that 

axis. Compar ing  the results of  Figs. 8(a) and 8 

(c) give insight into the nature of  the filter 

influence. 

6. Numerical  Results  

To perform the t ime domain  analysis and three 

axes simulation,  a pre-bui l t  three axes s imulat ion 

loop is used. The objectives o f  the s imulat ion are 

to verify a cross coupl ing between the axes and 

to demonstrate  the filter's capabil i ty for elimi- 

nating the unfavorable  effects. The roll axis gain, 

Table 3 Stability per[brmance of three-axis control 
loop without filter in flexible structures 

Gain and Phase Margin (without filter) 

Gain : 3.547 dB@0.7233 Hz 
Roll 

Phase : 58.23 deg@0.0176 Hz 

Gain :21 .04dB@0.2032Hz 
Pitch 

Phase : 82.17 deg@0.2142 Hz 

Gain : 20.07 dB@0.1701 Hz 
Yaw 

Phase : 81.64 deg@0.0165 Hz 

Motor Gain : 12 dB@0.3303 Hz 
controller Phase : 40 deg@0.1130 Hz 

Table 4 Stability pertbrmance of three-axis control 
loop with filter in flexible structures 

Gain and Phase Margin (without filter) 

Gain : 16.12dB@0.1302 Hz 
Roll 

Phase : 76.07 deg@0.0176 Hz 

Gain : 14.21 dB@0.1300Hz 
Pitch 

Phase : 76.79 deg@0.0212 Hz 

Gain : 16.38 dB@0.1305 Hz 
Yaw 

Phase : 77.48 deg@0.0164 Hz 

Motor Gain : 10.53 dB@0.3285 Hz 
controller Phase : 38.84 deg@0.1146 Hz 

Table 5 Parameters for dynamic modeling and con- 
troller design with flexible structures 

Moments of 
Values (kg.m 2) 

Inertia 

lxx, lxy, Ixz 307.50 2.08 -- 180 
Iyx, lyy, Iyz 2.08 1 4 8 . 3 2  --8.30 
lzx. Ixy, lzz - -1 .80  - -8 .30  216.10 

time delay 0.25 sec 

Gains Values 

Roll Kp=32, K i : 0 . 6 9  
pitch K t , :  14, Ki=0.35 
yaw Kp=  20, /~--0.40 

: s + f l  L.- -v- - -  
{ Inner Filter 

O,, , .~,(s)6~ Pl L ~  Non-linear Tc(s) 
" -,~- f - [ Controller ~ [ ] - [ WheelModel 1 ~  

I Axis Controller 

91 [ [ ~ I ~ 1  Flexible 

Fig. 5 Block diagram of control loop with low pass 
fillers 
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in the absence of  the filter, do not meet the margin 

of  top- level  requirements as shown in Table  3. 
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Fig. 6(e) Attitude roll error without flexibility from 

the simulation results of KOMPSAT-I  

Table  4 shows the stability margin for the GM 

model  with the filter, which demonstrates the 

effectiveness of  the filter in improing the per- 

formance. 

Figure 6 shows the s imulat ion step response 

of  30 degrees atti tude command input on roll axis. 

In Fig. 6, there are cross coupl ing effects in the 

pitch and yaw responses and they are caused by 

the flexibility of  the satellite. Figs. 6(b) and 6(c) 

show the effects the flexable structures such as 

solar array on spacecraft during roll maneuver.  

Compared  to the rigid body model,  the re- 

sponse for the flexible body takes more than 30 

seconds to settle down. It is evident that the dis- 

turbance may excite the flexible mode. Com- 

paring the results of  Figs. 6(a) ,  6(b) and 6(c) 

with 7, we can observe the characteristics of  the 

flexibility effects. The simulat ion of  the global  

mode (GM) model  and on-o rb i t  model  shows 

that the settling time is 350 sec. It means that the 

wheel momentum is generated to perform this 

rotation and subsequently goes diminished to ze- 

ro when attitude errors become zero. For  a rigid 

satellite, no such cross coupl ing effects are observ- 

ed. The magni tude of  the cross coupl ing effects is 

about  0.05 degrees about pitch and yaw axes. 

Figure 7 shows that a large roll  maneuver  res- 

ponse from of  in -orb i t  telemetry data K O M P S A T  

(KOrea Multi  Purpose SATel l i te  at the a alti tude 

of  685 Km. We find that the s imulat ion model  

result shows a very good correspondence with 
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the in-orbit  telemetry data. However,  about the 

overshoot and settling time, some differences 

exist between the s imulat ion model  and in-orbit  

model .  It has l imitations and differences com- 

pared with the in-orbit  environment.  The spac- 

ecraft body rotation rates for the external dis- 

turbance Td = 1.0 e -4  N m  is shown in Figs. 8 (a) 

and 8 (c) given an initial quaternion displacement 

o f  q = [0.0362 0 0].  A 350 second slew duration is 

used here to represent a typical precision pointing 

maneuver for science mode.  In other words, the 

wheel  generates m o m e n t u m  to compensate  for the 

attitude error between the initial  quaternion and 

the command  quaternion so that the satellite can 

adjust its attitude to the desired one. Figures 8 (a),  

8(b) show the effects o f  the low pass filter that 

provides the attenuation and isolate the control 

system from the flexible mode.  Fig. 9 shows a 

good convergence characteristic o f  the error 

quaternions and it clearly demonstrates that the 

wheel  speed l imitation and torque capabil i ty are 

within the range of  the specification of  the reac- 

tion wheel.  

7 .  C o n c l u s i o n s  

In this paper an attitude control problem of  a 

large flexible spacecraft is studied, with a f lee-  

free flexible model  having a reaction wheel  as an 

actuator and gyro sensor. It is shown that the GM 

is an effective model  for attitude controller design 

for space structures with a large flexible mode. 
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The performance of the proposed controller is 

slightly altered by adding flexibility to the rigid 

satellite model. The performance enhancement by 

inconporating low pass filters is shown by the 

improvement in the gain margin and phase mar- 

gin. It shows that low pass filters are effective in 

providing a necessary attenuation and in isolating 

the control system from the appendage flexible 

mode. 
The numerical simulation results showed that 

the cross-coupling of the axes are negligible in the 

presence of filters. And the controller designed 

using the GM model is applicable to the FE 

model. The results of this paper provide a basis 

for systematic constant feedback gain solution of 

large angle flexible spacecraft rotational man- 

euvers in which flexibility needs to be consider- 

ed. The designed controllers for a large flexible 

model are verified by numerical simulations with 

in-orbi t  satellite measurement data. 
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